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Divergence and flutter instability of a cantilevered beam on a partial elastic foundation

subjected to a subtangential load at the free end are investigated. The dependence of

foundation. Particular attention is paid to the stabilizing and destabilizing effects of the

various parameters.
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1. Introduction

Divergence elastic instability of axially compressed columns with conservative loads on full and partial elastic
foundations is examined in numerous [1–8] analytical and experimental papers. These studies show that increasing the
foundation modulus (or foundation coverage) increases the minimum critical load for divergence.

Smith and Herrmann [9] showed that flutter complicates the situation for subtangential (described by the tangency-

coefficient Z which interpolates between conservative Z¼ 0 and follower Z¼ 1) loads. Specifically, [9] shows that a uniform
elastic foundation has no effect on the stability of a uniform column subject to a non-conservative load with Z40:5 by
establishing that flutter is the governing instability for Z40:5 and that (for any value of Z) the flutter critical load is
independent of the foundation modulus. This surprising and counter intuitive result generated a flurry of activity:
Sundarajan [10] extended the result to fully supported columns with geometrically similar foundation modulus and mass
distributions: Jacoby and Elishakoff [11] incorporated discrete mass and foundation distributions in Sundarajan’s
results; Elishakoff and Jacoby [12] used simple model structures to clarify the counter-intuitive behavior;
while Rao and Rao [13] examined Z¼ 0:1,0:2, . . . ,0:9,1:0 and showed that flutter was the governing instability for stiffer
foundations with ZZ0:4 and numerically verified that the critical flutter load was independent of the foundation modulus
for those Z values.

Recently, Kirillov and Seyaranien [14] gave a complete analytical solution of the Smith–Herrmann problem for 0rZr1
demonstrating that as the foundation modulus increases the critical divergence load increases with one end in contact
with constant flutter domain.

Hauger and Vetter [15] demonstrated that a non-uniform foundation can destabilize a column with respect to flutter.
Specifically, [15] shows that (for a particular quadratic variation of the foundation modulus and follower Z¼ 1 loading) a
two-term Galerkin approximation to the critical flutter load decreases as the foundation modulus increases. This
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anomalous behavior prompted studies describing other situations where a foundation decreases the flutter stability of a
structure. Lee and Young [16] showed (using transfer matrices) that (for a sufficiently stiff foundation with follower load)
tapering a column increases the flutter critical load. Elishakoff and Wang [17] showed (using an algebraically involved,
two-term, Galerkin approximation) that a partial foundation can reduce the critical flutter load for a uniform column
subject to a follower load. Kirillov and Seyranian [14] computed (with a variational argument) the analytical derivative of
the flutter load with respect to positive perturbations (located at position x on the column) from a uniform foundation
modulus. The derivative is positive for some Z and x and negative for others demonstrating conclusively that non-uniform
foundations can stabilize or destabilize the column under non-conservative loads.

There has been some controversy concerning the practical significance of follower/subtangential loads for physical
structures. A letter to the editor of JSV by Koiter [18] claimed that there was no physical mechanism for experimental
follower loads. The resulting discussion (a brief letter from Sugiyama et al. [19] followed by a substantial review article by
Langthjem and Sugiyama [20]) stressed experimental observations of flutter instabilities and other physical situations
(strikingly the stabilization of a flexible column by a compressive rocket) where observed physical behavior is best
understood and modelled by subtangential loads. The editorial response [18] was to encourage discussion and reiterate to
authors and referees the primary importance of physical relevance.

Subtangential loads (from solid–fluid interactions, etc.) are clearly potentially significant for light weight composite
structures. Moreover, not all physical structures are engineered and two recent biomechanical models focus on follower
loads and elastic foundations to explain the load carrying capabilities of the human spine and mosquito fascicle (biting
structure).

The mosquito fascicle is a thin hollow needle with a surrounding structure (labium) that retracts as the fascicle
penetrates the skin of the prey. Ramasubramanian et al. [21] model the fascicle as a variable length slender column on an
elastic foundation with a subtangential load (actively applied by the mosquito’s head) driving the fascicle into the skin.
The assumption of subtangential loading is motivated by high speed video of the head motions of a mosquito feeding. The
conclusions are that subtangential loading is helpful and that the support provided by the elastic foundation (labium) at
the free end is essential for the mosquito to penetrate the skin.

The human spine is a slender flexible column with additional muscular and skeletal structures. The mechanical role that
these additional structures play in supporting physiological loads has been investigated using a variety of tools. Andriacchi
et al. [22] investigated the role of the skeletal components with a multi-component (39 physiologically accurate
rigid-bodies representing vertebrae, ribs, etc. coupled by over 250 springs and beams representing soft tissue) spinal model
and showed that the rib-cage (attached at the free end of the lumbar spine) significantly stiffened the spine. Patwardhan
et al. [23] investigated the mechanical role of the musculature by attaching a cable system (to ensure that compressive
loads followed the spinal curve) to cadaver spines and showed that although this structure failed under a 100 Newton
vertical (Conservative) load it could sustain up to a physiologically realistic 1200 Newton follower load. Kim et al. [24]
demonstrated that a finite element beam model for the spine with an active musculature (117 muscle pairs with
physiological attachment points and load limits which constrain compressive loads in the beam to follow the spinal curve)
could support physiological loads.

The simplest model problem (after removing physiological details) for both the fascicle and spine is a slender column on
a partial elastic foundation under subtangential loading. In this paper, we bridge and extend the studies by Rao and Rao
[13], Elishakoff and Wang [17], and Kirillov and Seyranian [14] to study the stability of the column in Fig. 1. The column is
built-in at x=0 with a general subtangential load P at the free end x=L. A partial elastic foundation (the shaded region)
extends from l1L to l2L. We use the scaled length (a¼ ðl2�l1Þ and position b¼ ðl1þl2Þ=2) of the partial foundation in our
discussion of the results. The complete physical ranges 0rZr1 and 0rl1rl2r1 are examined using an analytical
technique (similar to that developed for an orthotropic plate problem by Jayaraman and Struthers [25]) to compute
detailed information about the dependence of divergence and flutter critical loads on foundation modulus k, extent a and
position b, as well as the tangency coefficient Z. Elisahkoff and Wang [17] consider only follower (Z¼ 1)
loads with foundation extending from the built in end (l1 ¼ 0 or equivalently a=2b): we compare our analytical
results to the results from their numerical approximation for l1 ¼ 0 and l2 ¼ 1. Rao and Rao [13] and
Kirillov and Seyranian [14] consider the fully supported case (l1 ¼ 0 and l2 ¼ 1 or equivalently a=1 and b=0.5) for
Z¼ 0:1,0:2, . . . ,1:0.
xw3 L
P

λ1L
λ2L

aL
bL

L

Fig. 1. Beam geometry and loading. The foundation (shaded portion) of length aL centered at bL extends from l1L to l2L.
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2. Problem formulation

We extend the notation and development of Elishakoff and Wang [17] to the column shown in Fig. 1. The column
(with uniform mass density m and flexural rigidity EI) occupies the interval 0rxrL. It is built in at x=0 and subject to a
subtangential follower force (with tangency coefficient 0rZr1) P at the free end x=L. A uniform elastic foundation
(with foundation modulus K) supports the central portion x1 ¼ l1Lrxrl2L¼ x2 of the column. The Bernoulli–Euler
equations [17] for the lateral displacement w on the three regions (with EI the flexural rigidity, m the mass density per unit
length, and K the foundation modulus) are

EI@xxxxw1þP@xxw1þ0w1þm@ttw1 ¼ 0, 0rxol1L,

EI@xxxxw2þP@xxw2þKw2þm@ttw2 ¼ 0, l1Lrxol2L,

EI@xxxxw3þP@xxw3þ0w3þm@ttw3 ¼ 0, l2LrxoL: (1)

The boundary (at the built-in end (x=0) and the free end (x=L)) and continuity (at the foundation transitions x=x1 and x2)
conditions are

w1ð0,tÞ ¼ 0, @xxw3ðL,tÞ ¼ 0,

@xw1ð0,tÞ ¼ 0, @xxxw3ðL,tÞ ¼
P

EI
ðZ�1Þ@xw3ðL,tÞ,

w1ðx1,tÞ ¼w2ðx1,tÞ, w2ðx2,tÞ ¼w3ðx2,tÞ,

@xw1ðx1,tÞ ¼ @xw2ðx1,tÞ, @xw2ðx2,tÞ ¼ @xw3ðx2,tÞ,

@xxw1ðx1,tÞ ¼ @xxw2ðx1,tÞ, @xxw2ðx2,tÞ ¼ @xxw3ðx2,tÞ,

@xxxw1ðx1,tÞ ¼ @xxxw2ðx1,tÞ, @xxxw2ðx2,tÞ ¼ @xxxw3ðx2,tÞ: (2)

Substituting the modal forms wjðx,tÞ ¼cjðx=LÞeiot for j=1,2,3 into Eqs. (1) and (2) gives the three ordinary differential
equations (ODE) for the displacement

c00001 ðzÞþFc001ðzÞþð0�a
2Þc1ðzÞ ¼ 0 for 0ozol1,

c00002 ðzÞþFc002ðzÞþðk�a
2Þc2ðzÞ ¼ 0 for l1ozol2,

c00003 ðzÞþFc003ðzÞþð0�a
2Þc3ðzÞ ¼ 0 for l2ozo1, (3)

along with the four boundary conditions and eight continuity conditions

c1ð0Þ ¼ 0, c1ðl1Þ ¼c2ðl1Þ, c2ðl2Þ ¼c3ðl2Þ,

c01ð0Þ ¼ 0, c01ðl1Þ ¼c02ðl1Þ, c02ðl2Þ ¼c03ðl2Þ,

c003ð1Þ ¼ 0, c001ðl1Þ ¼c002ðl1Þ, c002ðl2Þ ¼c003ðl2Þ,

c0003 ð1Þ ¼ FðZ�1Þc03ð1Þ, c0001 ðl1Þ ¼c0002 ðl1Þ, c0002 ðl2Þ ¼c0003 ðl2Þ, (4)

where z¼ x=L, F=PL2/EI, a¼oL2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
, and the ratio of the non-dimensional foundation modulus and flexural rigidity

k = K L2/(E I/L2) characterizes the relative foundation stiffness. For distinct roots {n1, n2, n3, n4} and {m1, m2, m3, m4} of the
characteristic polynomials n4þFn2

�a2 ¼ 0 and m4þFm2
�ða2�kÞ ¼ 0 the d th derivative (including d=0) of solutions to

Eq. (3) are

cðdÞ1 ðzÞ ¼
X4

i ¼ 1

C1,in
d
i eniz for 0ozol1,

cðdÞ2 ðzÞ ¼
X4

i ¼ 1

C2,im
d
i emiz for l1ozol2,

cðdÞ3 ðzÞ ¼
X4

i ¼ 1

C3,in
d
i eniz for l2ozo1: (5)

The wide applicability of these explicitly complex solutions (valid provided aa0, a2�ka0, F2þ4a2a0, and
F2þ4ða2�kÞa0) outweighs any benefit from avoiding complex arithmetic by rewriting complex-exponentials as explicitly
real combinations of trigonometric and exponential functions. Special cases with repeated roots are easily handled e.g. for
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divergence (a¼ 0) n4+F n2=0 has roots {n1,n2,0,0} and the solution is

c1ðzÞ ¼ C1,1en1zþC1,2en2zþC1,31þC1,4z, 0ozol1,

c2ðzÞ ¼ C2,1em1zþC2,2em2zþC2,3em3zþC2,4em4z, l1ozol2,

c3ðzÞ ¼ C3,1en1zþC3,2en2zþC3,31þC3,4z, l2ozo1:

3. Matrix formulation

We describe only the generic case: the non-generic cases (we needed a¼ 0 and a2�k¼ 0) are similar. Substituting the
solution given by expression equation (5) into the 12 boundary and continuity conditions Eq. (4) gives the matrix equation

MC¼ 012,1 (6)

for the complex twelve vector C = {C1,1, yC1,4, yC3,1,yC3,4} where 0p,q is the p� q zero matrix; BI is the 2� 4 matrix with
BI1,q=1 and BI2,q=nq; g0, g1, FF1, and FF2 are 1� 4 matrices with g0 = FF2 + F FF1 and g1 = F FF1 where FF11,q ¼ enq n1

q and
FF21,q ¼ enq n2

q; CCnðlÞ and CCmðlÞ are 4� 4 matrices with CCnðlÞp,q ¼ enqlnp�1
q and CCmðlÞp,q ¼ emqlmp�1

q ; and finally M is a
12� 12 matrix with M¼M0þZM1 where (for i=0 and 1) the block structure of M0 and M1 is

Mi¼

BI 02,4 02,4

CCnðl1Þ �CCmðl1Þ 04,4

04,4 �CCmðl2Þ CCnðl2Þ

01,4 01,4 FF2

01,4 01,4 gi

0
BBBBBB@

1
CCCCCCA
: (7)

Three special cases (no foundation l1 ¼ l2; foundation extending from the built-in end l1 ¼ 0; and foundation extending to
the free end l2 ¼ 1) can be computed without difficulty using the same formulation.

4. Analysis

The matrices M0 and M1 defined in Eq. (7) depend on the non-dimensional load F, foundation parameter k, foundation
interval ðl1,l2Þ, and frequency a. Non-trivial solutions of Eq. (6), which exist if and only if Det(M)=0, give non-trivial
displacements w indicating instability of w=0. Row linearity of the determinant gives DetðMÞ ¼G0þZG1 where
G0¼DetðM0Þ and G1¼DetðM1Þ. This linearity in Z allows us to complete an exhaustive analytical parameter study of the
underlying physical problem. Rather than solving

G0 F,k,l1,l2,að ÞþZG1 F,k,l1,l2,að Þ ¼ 0 (8)

directly for Z we compute the determinants G0 and G1 separately to avoid difficulties associated with the singularity
G1¼ 0.

For given F, k, l1, and l2 the non-dimensionalized frequency a¼oL2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
gives the time dependence eiot of the

mode with follower parameter given by Eq. (8): a¼ 0 gives a non-trivial, static equilibrium; a40 gives a non-trivial,
time-periodic mode.

4.1. Divergence critical loads

Non-trivial, static equilibria indicate a divergence instability. Values of the non-dimensional load F satisfying Eq. (8)
with a¼ 0 (for a given non-dimensional foundation modulus k, foundation interval 0rl1rl2r1, and follower parameter
Z) are divergence loads. The smallest divergence load for a given set of parameters is the critical divergence load.

Values of G0 and G1 with a¼ 0 (for k=10,100,200,400) are compiled on an extensive regular grid of F, l1, and l2 values
with 0rl1rl2r1, and 0rFr50. Divergence load curves are zero contours of G0þZG1 for fixed a¼ ðl2�l1Þ,
b¼ 0:5ðl1þl2Þ, and k as a function of Z and F. Non-dimensionalized loads F on the lower branches of divergence load
curves are critical divergence loads.

4.2. Flutter critical loads

Non-trivial, time-periodic modes indicate an incipient flutter instability. Values of the non-dimensional load F satisfying
Eq. (8) with a40 (for a given non-dimensional foundation modulus k, foundation interval 0rl1rl2r1, and follower
parameter Z) give non-trivial, time-periodic modes: the minimum of such F over all non-dimensional frequencies a40 is
the critical flutter load.

We temporarily fix (and suppress the dependence on) k,l1,l2 and Z to examine the dependence on a of loads FmðaÞ
which give non-trivial, time-periodic modes. Such loads satisfy Eq. (8) with F ¼ FmðaÞ which gives (with partial derivatives
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evaluated at FmðaÞ, k, l1, l2 and a)

@G0

@F
þZ @G1

@F

� �
F 0mðaÞþ

@G0

@a
þZ @G1

@a

� �
¼ 0,

when differentiated with respect to a. Combining this and the consequences (G0þZG1¼ 0 and F 0mðaÞ ¼ 0) of the critical
flutter load definition gives the explicit Z�independent flutter condition G1ð@G0=@aÞ�G0ð@G1=@aÞ ¼ 0.

Values of G0 and G1 (for k=10,100,200,400) are compiled on an extensive, regular grid of F, l1, l2, and a values with
0rl1ol2r1, 0rFr50, and 0rar100. Zero contours of G1ð@G0=@aÞ�G0ð@G1=@aÞ ¼ 0 (with differencing in a to
compute accurate partial derivatives) as a function of a and F give critical flutter loads as a function of a, b, and k. Finally,
the Z values are back computed using cubic interpolation of the tabulated data for G0 and G1. Some care has to be taken
when flutter loads cross the singular curves G1¼ 0.

4.3. Computational issues

4.3.1. Explicitly complex arithmetic

The only drawback of the explicitly complex computation is that incomplete floating point cancellation commonly
leaves insignificant imaginary residues in computed results. G0 and G1 are normalized (only the ratio is significant) to be
real and insignificant (in the computations reported less than 10�14) complex residues simply neglected.

4.3.2. Computational range

Linearity in Z is exploited (to avoid solving for F) by treating F as an input variable. As a consequence, the computational
range of F is restricted. Throughout this study, the maximum non-dimensionalized load is 50. This is not an issue, because
throughout the parameter ranges considered critical divergence loads and/or critical flutter loads were less than 50. Similar
considerations apply to the non-dimensional frequency a.

4.3.3. Computational resolution

Tables of values (for k=10, 100, 200, 400) were created for G0 and G1 as functions of F, l1, l2, and a. There are: 201 F

values (equally spaced) between 0 and 50; 41 l1 (and l2) values (equally spaced) between 0 and 1; and 1001 a values
(non-linearly scaled to enhance low frequency coverage) between 0 and 20. The resolution in F is better than 0.125 while
the resolution in l1 and l2 (and hence a and b) is better than 0.0125.
5. Results

The computational results are a comprehensive examination of the complete physical follower-parameter range
0rZr1 for 0rl1rl2r1 (equivalently a=2rbr1�a=2 where 0rar1) with a resolution of Dl¼ 0:025 for k=10, 100,
200, and 400. This section summarizes the results.

Fig. 2 illustrates the typical effect (in the figure the foundation extends for half the beam i.e. a=0.5 and k=100) of
changing the foundation center b. As the foundation moves from the built-in end b=0.25 to the free end b=0.75: critical
flutter loads are non-monotone; critical divergence loads increase; and the flutter interval ðZmin,1� where flutter is the
governing load expands.

Fig. 3 illustrates the typical effect (in the figure the partial foundation is centered on the beam i.e. b=0.5 and k=100) of
changing the foundation length a. As the foundation is reduced from a full foundation a=1 to a quarter foundation a=0.25:
critical flutter loads are non-monotone; critical divergence loads decrease; and the flutter interval expands.

Fig. 4 illustrates the typical effect (in the figure b=0.5 and a=0.5) of increasing the foundation modulus k for a partial
foundation. As the foundation modulus increases: critical flutter loads are non-monotone; critical divergence loads
increase; and the flutter interval first expands then shrinks.

Fig. 5 shows the effect of increasing the foundation modulus k for a complete foundation i.e. a=1. As the foundation
modulus increases: critical flutter loads do not change; critical divergence loads increase; and the flutter intervals expands
to approximately (0.32,1] when k� 50 after which it is constant. Note, stiff foundations (k4100) and any significant
follower component (Z40:33) are very susceptible to flutter instability. Fig. 5 recreates discrete values for (Z¼ 0:1, 0.2, y,
0.9, 1.0) from Rao and Rao [13] and the lower k values reported in Fig. 2 of Kirillov and Seyaranien [14]. The classic text
Hetényi [26] analyzes the loading beneath an aqueduct by considering a 0.3 m thick concrete beam (with elastic modulus
17 GPa) supported by a soil with foundation modulus 45 MPa m�1. For this example, k=10, 100, and 400 correspond to
beams of length 1.7, 3.0, and 4.3 m, respectively.

We now focus on the variation of the critical flutter load as a function of the location and size of the foundation for
various values of the follower parameter. Fig. 6 shows the percentage deviation of the critical flutter load (from the fully
supported critical flutter load—which is of course equal to the unsupported flutter load by Smith and Herrmann [9]) as a
function of a and b in the fully tangential case (Z¼ 1) for k=100. The parameter region is triangular since a=2obo1�a=2 .
The foundation can increase the critical flutter load (over a 19 percent increase for a 15 percent foundation extending from
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Fig. 2. Divergence (low values of Z) and flutter (high values of Z) critical loads for k¼ 100 and a=0.5: The solid curves are b=0.25; the dotted curves are

b=0.5; and the dashed curves are b=0.75.
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Fig. 3. Divergence (low values of Z) and flutter (high values of Z) critical loads for k=100 and b=0.5: The solid curves are a=0.25; the dotted curves are

a=0.5; the dashed curves are a=0.75; and the dot-dashed curves are a=1.00.
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the free end i.e. a=0.15 and b=0.925) or decrease the critical flutter load (over an 11 percent decrease for a 35 percent
foundation approximately 70 percent of the way out from the built-in end i.e. a=0.35 and b=0.70). Zero contours indicate
where the foundation has no effect on the critical flutter load separating parameters which stabilize the column by
increasing the flutter load from those that destabilize the column. Zero contours leave the a=0 border at b� 0:45 and 0.85.
In other words, for Z¼ 1 and k=100 a short foundation is destabilizing for 0:45obo0:85 and stabilizing otherwise. The
contours are closest together adjacent to the b=1�a/2 border indicating that the flutter load is most sensitive to the 5–10
percent of the foundation nearest the free-end. In this region, contours are essentially parallel to the border indicating that
in this region the critical flutter load essentially depends only on b+a/2 with the consequence that the critical flutter load
increases approximately twice as fast in b as it does in a.

Our computed critical flutter load for Z¼ 1 is independent of k when a=1.0, as expected. The value of 21.01 is well
within 0.125 (the numerical resolution) of the accurate value of 21.051. It is significantly better than the approximate value
21.6462 reported in Eliashakoff and Wang [17].
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Fig. 4. Divergence (low values of Z) and flutter (high values of Z) critical loads for a=0.5 and b=0.5. The solid curves are k=10; the dotted curves are

k=100; the dashed curves are k=200; and the dot dashed curves are k=400.
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Fig. 5. Divergence (low values of Z) and flutter (high values of Z) critical loads for a=1.0 and b=0.5. The solid curves are k=10; the dotted curves are

k=100; the dashed curves are k=200; and the dot dashed curves are k=400. Note, as expected for a complete foundation all the flutter curves

superimpose because the flutter load is independent of k.
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Fig. 7 shows the percent deviation of the critical flutter loads from the fully supported foundation as a function of a and
b for Z¼ 0:6 and k=100. The foundation can again increase or decrease the flutter load (over a 7 percent increase for a 65
percent foundation extending from the built-in end, i.e. a=0.65 and b=0.325 and over a 7 percent decrease for a 30 percent
foundation approximately 75 percent of the way out from the built-in end, i.e. a=0.30 and b=0.75) depending on the length
a and center b of the foundation. It is noteworthy that the easily explained peak for Z¼ 1 with a foundation concentrated at
the free-end has almost completely vanished for Z¼ 0:6. As a general principle, both the increase and decrease are smaller
than in the pure tangential case shown in Fig. 6.

The side b=a/2 i.e. l1 ¼ 0 and l2 ¼ a of Fig. 6 is an exact computation of the approximate results in Eliashakoff and Wang
[17]: their two-term Galerkin approximation is easily modified (literally replacing the unit-step function U[a�y] with
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Fig. 6. Percentage deviation of normalized flutter critical loads for k=100 and Z¼ 1. Solid contours are multiples of 5 percent.
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Fig. 7. Percentage deviation of normalized critical flutter loads for k=100 and Z¼ 0:6. Solid contours are multiples of 5 percent.
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U[y�a]) to compute the second sloping side b=1�a/2 i.e. l1 ¼ 1�a and l2 ¼ 1 in Fig. 6. Fig. 8 shows the approximate
normalized critical flutter loads computed using the technique described in [17].

Our analytical results in Fig. 6 qualitatively match (along the two sloped edges of the triangle) the two-term Galerkin
numerical approximations in Fig. 8. The recomputation and extension of [17] shown in Fig. 8 was prompted by the fact that
Fig. 6 (along the sloped side b=a/2 of the triangle) does not match the approximate results in [17]. Having verified our
results with the their approximation we now believe that there is a typographical error in the algebraically involved
computation in [17].
6. Conclusions

Making the foundation stiffer (by increasing k), extending the foundation (by increasing a), or moving the foundation
towards the free-end (by increasing b) all stabilize the beam against divergence by increasing the critical divergence load.
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Extending the foundation or moving the foundation towards the free-end of the beam decreases the range of Z values
for which divergence is the governing failure mode. As in Ref. [14], stiffening the foundation can either increase or decrease
the range of Z values for which divergence is the governing failure mode.

The critical flutter load depends in a complicated manner on Z, k, a, and b. In general: the effects on the critical flutter
load is less pronounced for intermediate values of Z than for fully follower loads; for a partial foundation near the free-end
the critical flutter load increases with both a and b with the load approximately twice as sensitive to b as a.

For a fully supported beam (a=1 and b=0.5) the critical flutter load is independent of k and for stiff foundations
(kZ100) with moderately follower loads (Z40:32) the governing mode is flutter. As a result, the governing load for a fully
supported beam is independent of k for kZ100 and Z40:32.
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[26] M. Hetényi, Beams on Elastic foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann
Arbor, USA, 1946.


	Elastic stability of columns on partial elastic foundations under subtangential loading
	Introduction
	Problem formulation
	Matrix formulation
	Analysis
	Divergence critical loads
	Flutter critical loads
	Computational issues
	Explicitly complex arithmetic
	Computational range
	Computational resolution


	Results
	Conclusions
	Acknowledgements
	References




